
Gradient Descent



Review: Gradient Descent

• In step 3, we have to solve the following optimization 
problem:

𝜃∗ = argmin
𝜃

𝐿 𝜃 L: loss function 𝜃: parameters

Suppose that θ has two variables {θ1, θ2}

Randomly start at 𝜃0 =
𝜃1
0

𝜃2
0 𝛻𝐿 𝜃 =

Τ𝜕𝐿 𝜃1 𝜕𝜃1
Τ𝜕𝐿 𝜃2 𝜕𝜃2

𝜃1
1

𝜃2
1 =

𝜃1
0

𝜃2
0 − 𝜂

Τ𝜕𝐿 𝜃0, 𝜕𝜃1
Τ𝜕𝐿 𝜃0 𝜕𝜃2

𝜃1 = 𝜃0 − 𝜂𝛻𝐿 𝜃0

𝜃1
2

𝜃2
2 =

𝜃1
1

𝜃2
1 − 𝜂

Τ𝜕𝐿 𝜃1 𝜕𝜃1
Τ𝜕𝐿 𝜃1 𝜕𝜃2

𝜃2 = 𝜃1 − 𝜂𝛻𝐿 𝜃1



Review: Gradient Descent 

Start at position 𝜃0

Compute gradient at 𝜃0

Move to 𝜃1 = 𝜃0 - η𝛻𝐿 𝜃0

Compute gradient at 𝜃1

Move to 𝜃2 = 𝜃1 – η𝛻𝐿 𝜃1
Movement

Gradient

…
…

𝜃0

𝜃1

𝜃2

𝜃3

𝛻𝐿 𝜃0

𝛻𝐿 𝜃1

𝛻𝐿 𝜃2

𝛻𝐿 𝜃3

𝜃1

𝜃2 Gradient: Loss 的等高線的法線方向



Gradient Descent
Tip 1: Tuning your 

learning rates



Learning Rate

No. of parameters updates

Loss

Loss

Very Large

Large

small

Just make
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Set the learning rate η carefully

If there are more than three 
parameters, you cannot 
visualize this.

But you can always visualize this.



Adaptive Learning Rates

• Popular & Simple Idea: Reduce the learning rate by 
some factor every few epochs.
• At the beginning, we are far from the destination, so we 

use larger learning rate

• After several epochs, we are close to the destination, so 
we reduce the learning rate

• E.g. 1/t decay: 𝜂𝑡 = Τ𝜂 𝑡 + 1

• Learning rate cannot be one-size-fits-all

• Giving different parameters different learning 
rates 



Adagrad

• Divide the learning rate of each parameter by the  
root mean square of its previous derivatives

𝜎𝑡: root mean square of 
the previous derivatives of 
parameter w

w is one parameters

𝑔𝑡 =
𝜕𝐿 𝜃𝑡

𝜕𝑤

Vanilla Gradient descent

Adagrad

𝑤𝑡+1 ← 𝑤𝑡 − 𝜂𝑡𝑔𝑡

𝜂𝑡 =
𝜂

𝑡 + 1

𝑤𝑡+1 ← 𝑤𝑡 −
𝜂𝑡

𝜎𝑡
𝑔𝑡

Parameter dependent



Adagrad

𝑤1 ← 𝑤0 −
𝜂0

𝜎0
𝑔0

…
…

𝑤2 ← 𝑤1 −
𝜂1

𝜎1
𝑔1

𝑤𝑡+1 ← 𝑤𝑡 −
𝜂𝑡

𝜎𝑡
𝑔𝑡

𝜎0 = 𝑔0 2

𝜎1 =
1

2
𝑔0 2 + 𝑔1 2

𝜎𝑡 =
1

𝑡 + 1


𝑖=0

𝑡

𝑔𝑖 2

𝑤3 ← 𝑤2 −
𝜂2

𝜎2
𝑔2 𝜎2 =

1

3
𝑔0 2 + 𝑔1 2 + 𝑔2 2

𝜎𝑡: root mean square of 
the previous derivatives of 
parameter w



Adagrad

• Divide the learning rate of each parameter by the  
root mean square of its previous derivatives

𝜂𝑡 =
𝜂

𝑡 + 1

𝑤𝑡+1 ← 𝑤𝑡 −
𝜂

σ𝑖=0
𝑡 𝑔𝑖 2

𝑔𝑡

1/t decay

𝑤𝑡+1 ← 𝑤𝑡 −
𝜂

𝜎𝑡
𝑔𝑡

𝜎𝑡 =
1

𝑡 + 1


𝑖=0

𝑡

𝑔𝑖 2

𝜂𝑡

𝜎𝑡



Contradiction?

𝑤𝑡+1 ← 𝑤𝑡 −
𝜂

σ𝑖=0
𝑡 𝑔𝑖 2

𝑔𝑡

Vanilla Gradient descent

Adagrad

Larger gradient, 
larger step

Larger gradient, 
smaller step

Larger gradient, 
larger step

𝑤𝑡+1 ← 𝑤𝑡 − 𝜂𝑡𝑔𝑡

𝑔𝑡 =
𝜕𝐿 𝜃𝑡

𝜕𝑤
𝜂𝑡 =

𝜂

𝑡 + 1



Intuitive Reason

• How surprise it is

𝑤𝑡+1 ← 𝑤𝑡 −
𝜂

σ𝑖=0
𝑡 𝑔𝑖 2

𝑔𝑡

造成反差的效果

g0 g1 g2 g3 g4 ……

0.001 0.001 0.003 0.002 0.1 ……

g0 g1 g2 g3 g4 ……

10.8 20.9 31.7 12.1 0.1 ……

反差

𝑔𝑡 =
𝜕𝐿 𝜃𝑡

𝜕𝑤
𝜂𝑡 =

𝜂

𝑡 + 1

特別大

特別小



Larger gradient, larger steps?

𝑦 = 𝑎𝑥2 + 𝑏𝑥 + 𝑐

𝜕𝑦

𝜕𝑥
= |2𝑎𝑥 + 𝑏|

𝑥0

|𝑥0 +
𝑏

2𝑎
|

𝑥0

|2𝑎𝑥0 + 𝑏|

Best step:

−
𝑏

2𝑎

|2𝑎𝑥0 + 𝑏|

2𝑎
Larger 1st order 
derivative means far 
from the minima



Comparison between 
different parameters

𝑤1

𝑤2

𝑤1

𝑤2

a

b

c

d

c > d

a > b

Larger 1st order 
derivative means far 
from the minima

Do not cross parameters



Second Derivative

𝑦 = 𝑎𝑥2 + 𝑏𝑥 + 𝑐

𝜕𝑦

𝜕𝑥
= |2𝑎𝑥 + 𝑏|

−
𝑏

2𝑎

𝑥0

|𝑥0 +
𝑏

2𝑎
|

𝑥0

|2𝑎𝑥0 + 𝑏|

Best step:

𝜕2𝑦

𝜕𝑥2
= 2𝑎 The best step is

|First derivative|

Second derivative

|2𝑎𝑥0 + 𝑏|

2𝑎



Comparison between 
different parameters

𝑤1

𝑤2

𝑤1

𝑤2

a

b

c

d

c > d

a > b

Larger 1st order 
derivative means far 
from the minima

Do not cross parameters
|First derivative|

Second derivative
The best step is

Smaller 
Second

Larger
Second

Larger second derivative

smaller second derivative



|First derivative|

Second derivative

The best step is

Use first derivative to estimate second derivative

first derivative 2

𝑤1 𝑤2

larger second 
derivativesmaller second 

derivative

𝑤𝑡+1 ← 𝑤𝑡 −
𝜂

σ𝑖=0
𝑡 𝑔𝑖 2

𝑔𝑡

?





Gradient Descent
Tip 2: Stochastic 

Gradient Descent 

Make the training faster



Stochastic Gradient Descent

Gradient Descent

Stochastic Gradient Descent
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Pick an example xn

Faster!

𝐿 =

𝑛

ො𝑦𝑛 − 𝑏 + 𝑤𝑖𝑥𝑖
𝑛

2

Loss is the summation over 
all training examples

𝐿𝑛 = ො𝑦𝑛 − 𝑏 + 𝑤𝑖𝑥𝑖
𝑛

2

Loss for only one example



Stochastic Gradient Descent

Gradient Descent

Stochastic Gradient Descent

See all 
examples

See all 
examples

See only one 
example

Update after seeing all 
examples

If there are 20 examples, 
20 times faster.

Update for each example



Gradient Descent
Tip 3: Feature Scaling



Feature Scaling

Make different features have the same scaling

Source of figure: 
http://cs231n.github.io/neural-
networks-2/

𝑦 = 𝑏 + 𝑤1𝑥1 +𝑤2𝑥2

𝑥1 𝑥1

𝑥2 𝑥2



Feature Scaling

y1w

2w
1x

2x



b

1, 2 ……

100, 200 ……

1w

2w Loss L

y1w

2w
1x

2x



b

1, 2 ……

1w

2w Loss L

1, 2 ……

𝑦 = 𝑏 + 𝑤1𝑥1 +𝑤2𝑥2



Feature Scaling

…
…

…
…

…
…

…
…

…
…

…… ……

𝑥1 𝑥2 𝑥3 𝑥𝑟 𝑥𝑅

mean: 𝑚𝑖

standard 
deviation: 𝜎𝑖

𝑥𝑖
𝑟 ←

𝑥𝑖
𝑟 −𝑚𝑖

𝜎𝑖

The means of all dimensions are 0, 
and the variances are all 1 

For each 
dimension i:

𝑥1
1

𝑥2
1

𝑥1
2

𝑥2
2



Gradient Descent
Theory



Question

• When solving: 

• Each time we update the parameters, we obtain 𝜃
that makes 𝐿 𝜃 smaller.

𝜃∗ = arg𝑚𝑖𝑛
𝜃

𝐿 𝜃 by gradient descent

𝐿 𝜃0 > 𝐿 𝜃1 > 𝐿 𝜃2 > ⋯

Is this statement correct?



Warning of Math



1

2

Formal Derivation

• Suppose that θ has two variables {θ1, θ2}

0

1

2

How?

L(θ)

Given a point, we can 
easily find the point 
with the smallest value 
nearby.



Taylor Series

• Taylor series: Let h(x) be any function infinitely 
differentiable around x = x0. 

 
  

 k
k

k

xx
k

x
0

0

0

!

h
xh 





    
 

  



2

0
0

000
!2

xx
xh

xxxhxh

When x is close to x0       000 xxxhxhxh 



sin(x)= 

……

E.g. Taylor series for h(x)=sin(x) around x0=π/4

The approximation 
is good around π/4.



Multivariable Taylor Series
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When x and y is close to x0 and y0

   
 

 
 

 0
00

0
00

00

,,
,, yy

y

yxh
xx

x

yxh
yxhyxh 











+ something related to (x-x0)2 and (y-y0)2 + …… 



Back to Formal Derivation
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Based on Taylor Series:
If the red circle is small enough, in the red circle
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L(θ)



1

2

Back to Formal Derivation
Based on Taylor Series:
If the red circle is small enough, in the red circle
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L(θ)

Find θ1 and θ2 in the red circle 
minimizing L(θ) 
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constant

d
Simple, right?



Gradient descent – two variables
Red Circle: (If the radius is small)

     bvaus  21L 
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To minimize L(θ) 
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Find θ1 and θ2 in the red circle 
minimizing L(θ) 
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Back to Formal Derivation

Find 𝜃1 and 𝜃2 yielding the smallest value of 𝐿 𝜃 in the circle
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a This is gradient 
descent.

Based on Taylor Series:
If the red circle is small enough, in the red circle
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constant

Not satisfied if the red circle (learning rate) is not small enough

You can consider the second order term, e.g. Newton’s method.



End of Warning 



More Limitation 
of Gradient Descent

𝐿

𝑤1 𝑤2

Loss

The value of the parameter w

Very slow at 
the plateau

Stuck at local minima

𝜕𝐿 ∕ 𝜕𝑤
= 0

Stuck at 
saddle point

𝜕𝐿 ∕ 𝜕𝑤
= 0

𝜕𝐿 ∕ 𝜕𝑤
≈ 0


