Gradient Descent

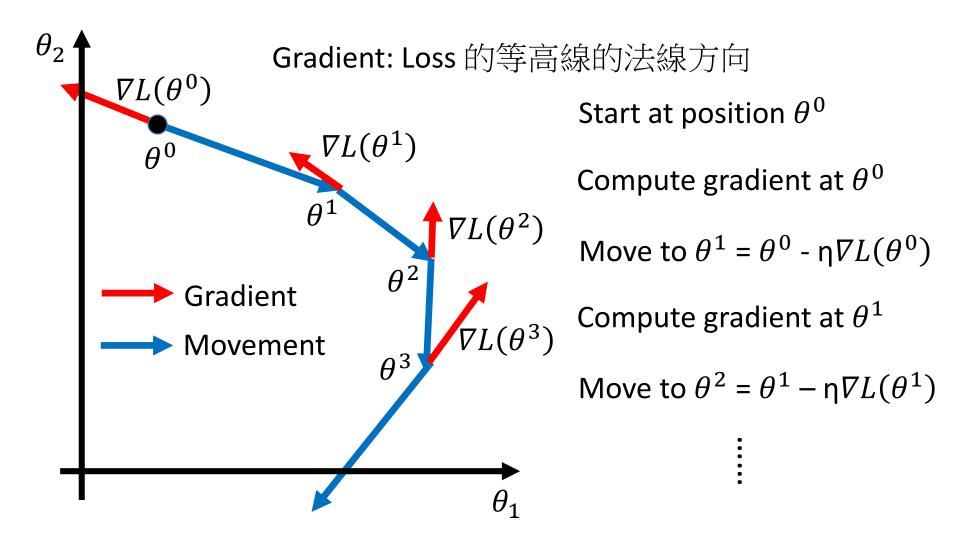
Review: Gradient Descent

 In step 3, we have to solve the following optimization problem:

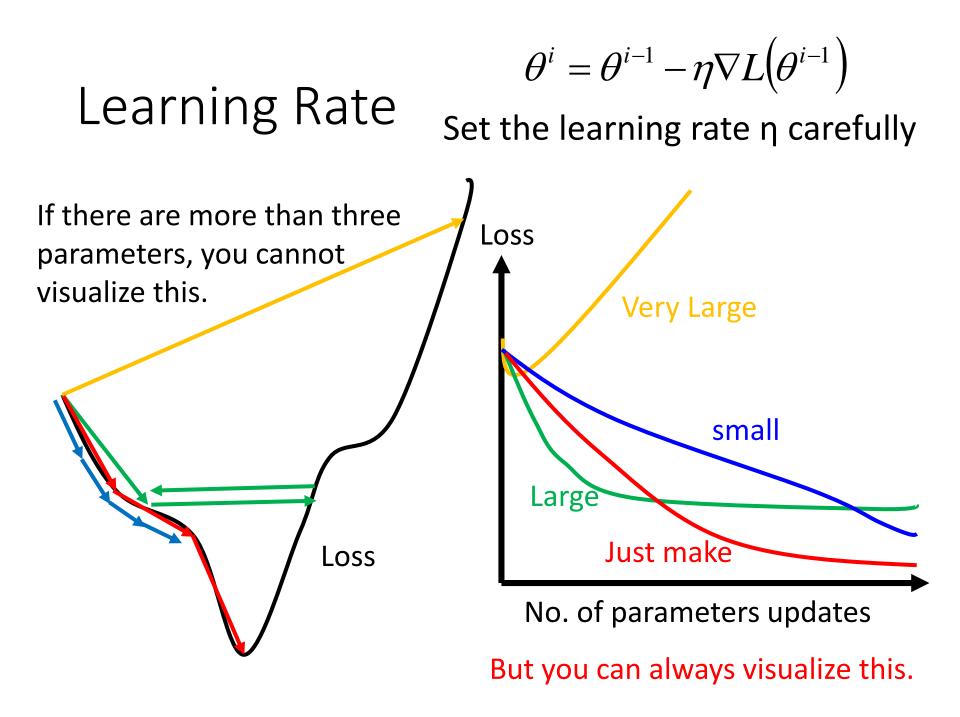
 $\theta^* = \arg\min_{\theta} L(\theta)$ L: loss function θ : parameters

Suppose that θ has two variables $\{\theta_1, \theta_2\}$ Randomly start at $\theta^0 = \begin{bmatrix} \theta_1^0 \\ \theta_2^0 \end{bmatrix}$ $\nabla L(\theta) = \begin{bmatrix} \partial L(\theta_1) / \partial \theta_1 \\ \partial L(\theta_2) / \partial \theta_2 \end{bmatrix}$ $\begin{bmatrix} \theta_1^1 \\ \theta_2^1 \end{bmatrix} = \begin{bmatrix} \theta_1^0 \\ \theta_2^0 \end{bmatrix} - \eta \begin{bmatrix} \partial L(\theta^0,) / \partial \theta_1 \\ \partial L(\theta^0) / \partial \theta_2 \end{bmatrix} \implies \theta^1 = \theta^0 - \eta \nabla L(\theta^0)$ $\begin{bmatrix} \theta_1^2 \\ \theta_2^2 \end{bmatrix} = \begin{bmatrix} \theta_1^1 \\ \theta_2^1 \end{bmatrix} - \eta \begin{bmatrix} \partial L(\theta^1) / \partial \theta_1 \\ \partial L(\theta^1) / \partial \theta_2 \end{bmatrix} \implies \theta^2 = \theta^1 - \eta \nabla L(\theta^1)$

Review: Gradient Descent



Gradient Descent Tip 1: Tuning your learning rates



Adaptive Learning Rates

- Popular & Simple Idea: Reduce the learning rate by some factor every few epochs.
 - At the beginning, we are far from the destination, so we use larger learning rate
 - After several epochs, we are close to the destination, so we reduce the learning rate
 - E.g. 1/t decay: $\eta^t = \eta/\sqrt{t+1}$
- Learning rate cannot be one-size-fits-all
 - Giving different parameters different learning rates

Adagrad
$$\eta^t = \frac{\eta}{\sqrt{t+1}} \quad g^t = \frac{\partial L(\theta^t)}{\partial w}$$

 Divide the learning rate of each parameter by the root mean square of its previous derivatives

Vanilla Gradient descent

$$w^{t+1} \leftarrow w^t - \eta^t g^t$$

w is one parameters

 $\frac{Adagrad}{w^{t+1} \leftarrow w^t - \frac{\eta^t}{\sigma^t} g^t}$

 σ^t : **root mean square** of the previous derivatives of parameter w

Parameter dependent

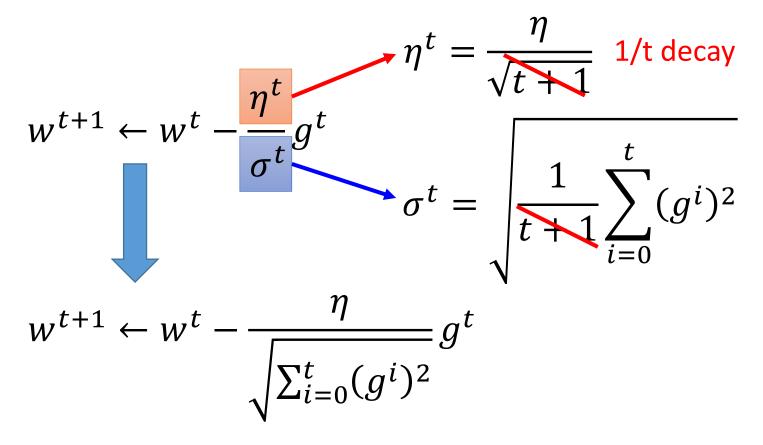
 σ^t : **root mean square** of the previous derivatives of parameter w

$$\begin{split} w^{1} &\leftarrow w^{0} - \frac{\eta^{0}}{\sigma^{0}} g^{0} \qquad \sigma^{0} = \sqrt{(g^{0})^{2}} \\ w^{2} &\leftarrow w^{1} - \frac{\eta^{1}}{\sigma^{1}} g^{1} \qquad \sigma^{1} = \sqrt{\frac{1}{2} [(g^{0})^{2} + (g^{1})^{2}]} \\ w^{3} &\leftarrow w^{2} - \frac{\eta^{2}}{\sigma^{2}} g^{2} \qquad \sigma^{2} = \sqrt{\frac{1}{3} [(g^{0})^{2} + (g^{1})^{2} + (g^{2})^{2}]} \\ &\vdots \\ w^{t+1} &\leftarrow w^{t} - \frac{\eta^{t}}{\sigma^{t}} g^{t} \qquad \sigma^{t} = \sqrt{\frac{1}{t+1} \sum_{i=0}^{t} (g^{i})^{2}} \end{split}$$

Adagrad

Adagrad

 Divide the learning rate of each parameter by the root mean square of its previous derivatives

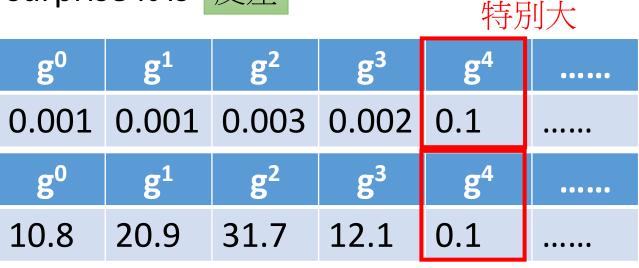


Contradiction?
$$\eta^t = \frac{\eta}{\sqrt{t+1}}$$
 $g^t = \frac{\partial L(\theta^t)}{\partial w}$

Vanilla Gradient descent Larger gradient, $w^{t+1} \leftarrow w^t - \eta^t g^t$ larger step Adagrad Larger gradient, larger step $w^{t+1} \leftarrow w^t$ Larger gradient, smaller step

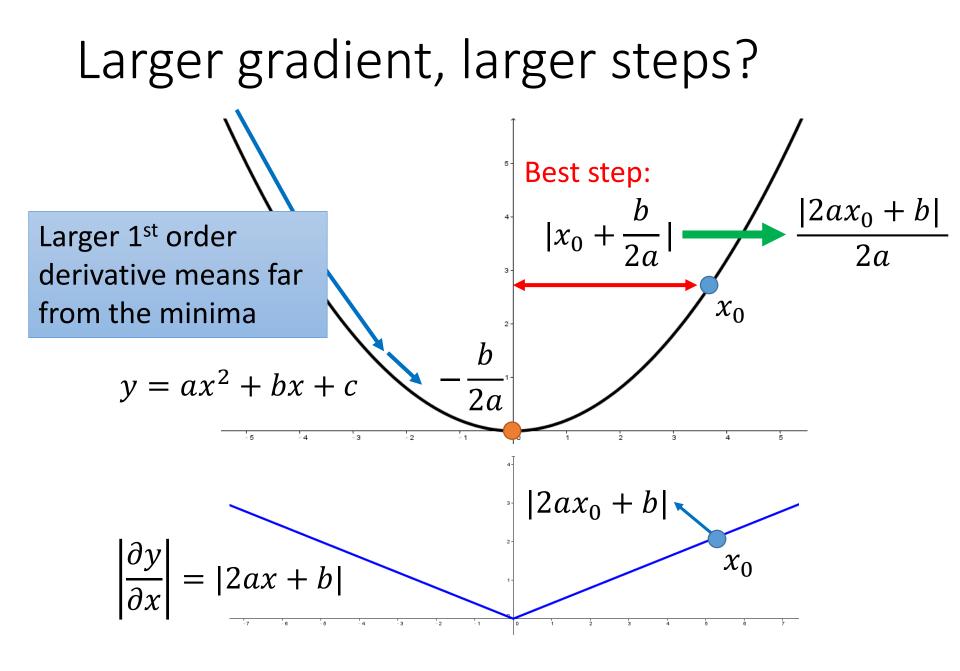
$\eta^{t} = \frac{\eta}{\sqrt{t+1}} g^{t} = \frac{\partial L(\theta^{t})}{\partial w}$ Intuitive Reason

• How surprise it is 反差

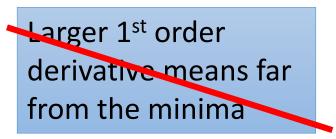


特別小

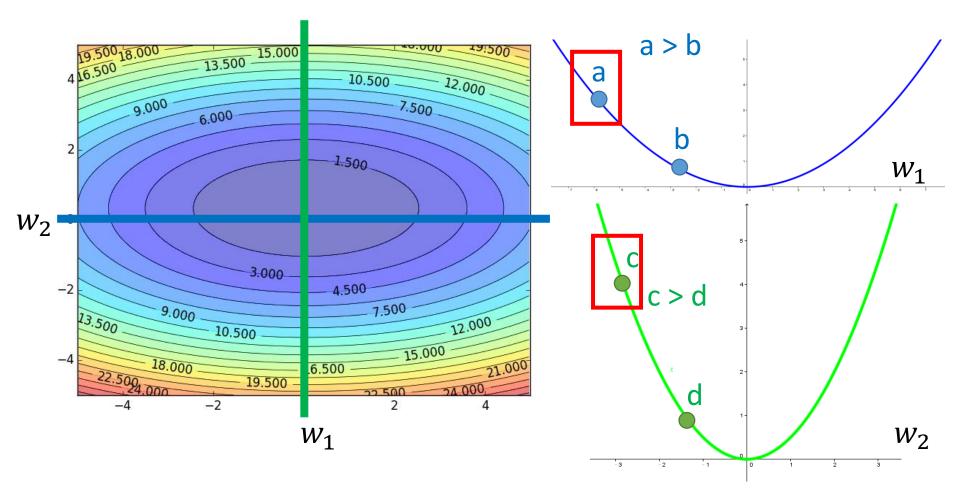
$$w^{t+1} \leftarrow w^t - \frac{\eta}{\sqrt{\sum_{i=0}^t (g^i)^2}} g^t$$
 造成反差的效果



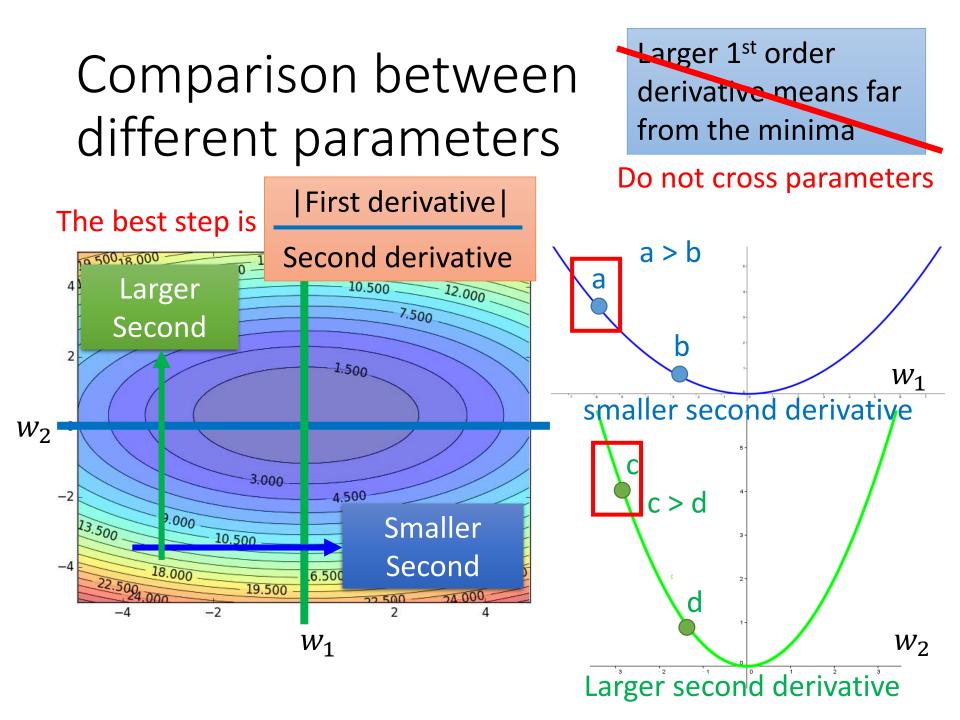
Comparison between different parameters

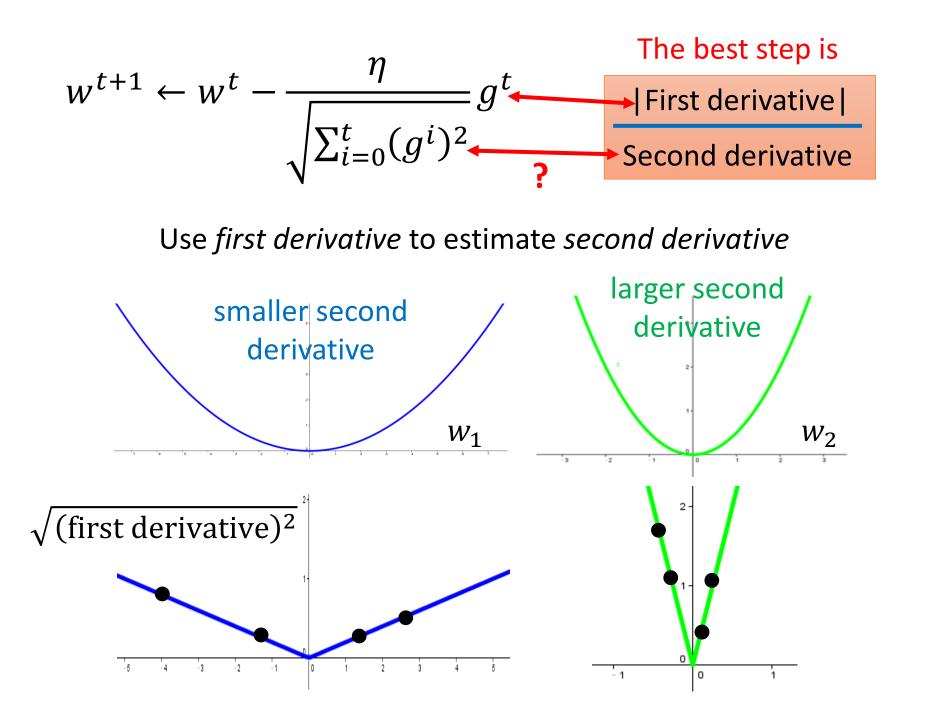


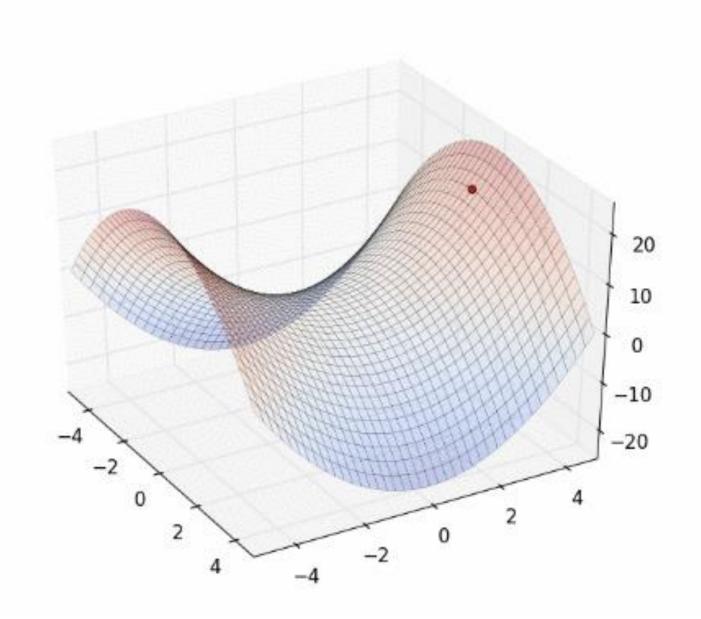
Do not cross parameters











Gradient Descent Tip 2: Stochastic Gradient Descent

Make the training faster

Stochastic Gradient Descent

$$L = \sum_{n} \left(\hat{y}^n - \left(b + \sum w_i x_i^n \right) \right)^2$$

Loss is the summation over all training examples

 $\theta^{i} = \theta^{i-1} - \eta \nabla L^{n} \left(\theta^{i-1} \right)$

$$igoplus extsf{Gradient Descent} \hspace{0.1in} heta^{i} = heta^{i-1} - \eta
abla L igoplus heta^{i-1} ig)$$

Stochastic Gradient Descent

Faster!

Pick an example xⁿ

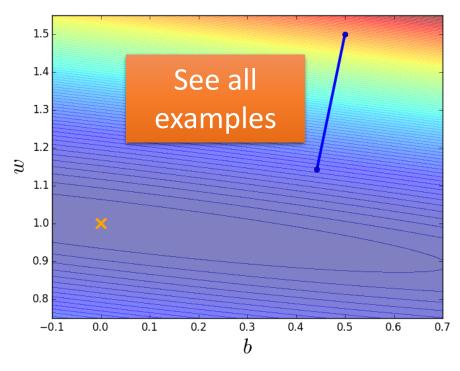
$$L^{n} = \left(\hat{y}^{n} - \left(b + \sum w_{i} x_{i}^{n}\right)\right)^{2}$$

Loss for only one example

Stochastic Gradient Descent

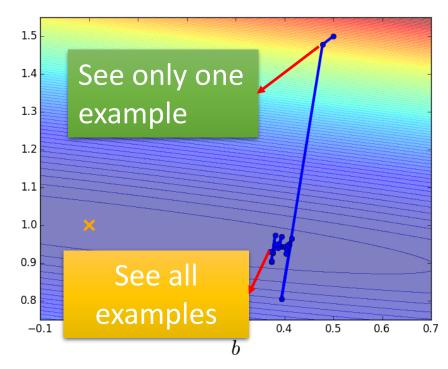
Gradient Descent

Update after seeing all examples



Stochastic Gradient Descent

Update for each example If there are 20 examples, 20 times faster.

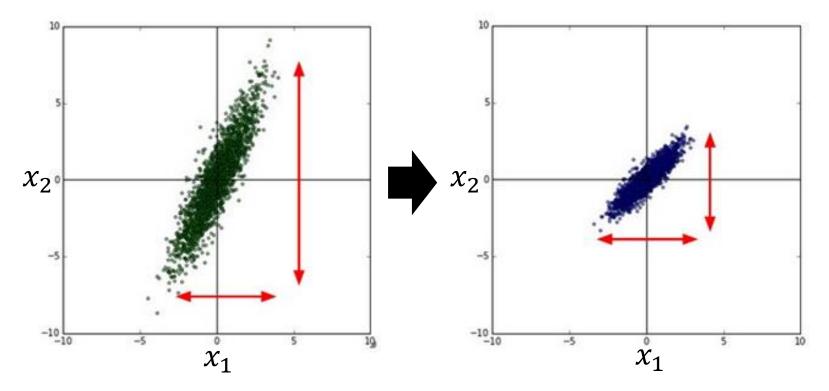


Gradient Descent Tip 3: Feature Scaling

Feature Scaling

Source of figure: http://cs231n.github.io/neuralnetworks-2/

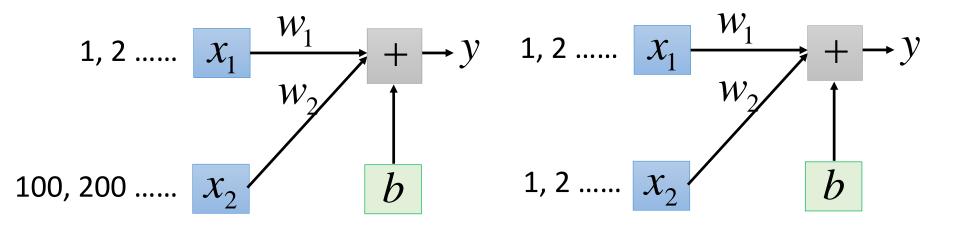
$$y = b + w_1 x_1 + w_2 x_2$$

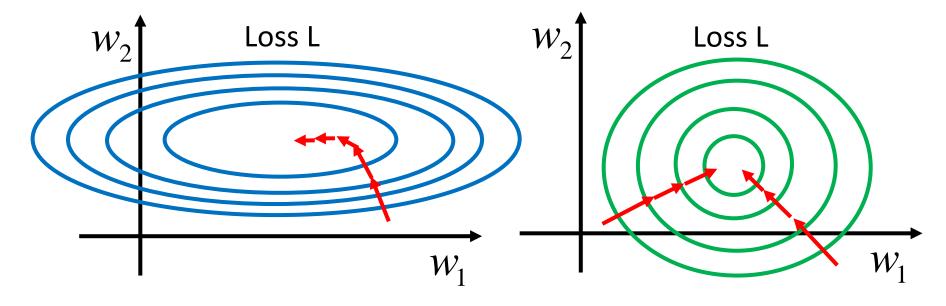


Make different features have the same scaling

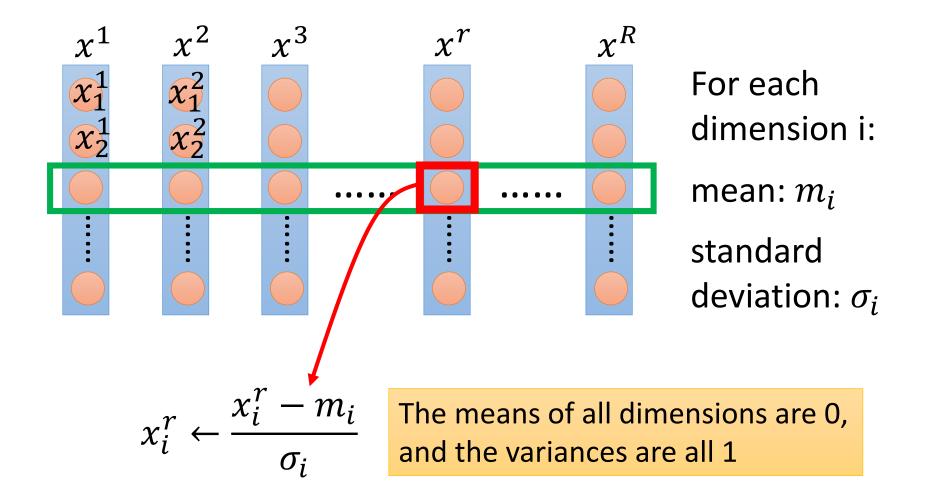
Feature Scaling

 $y = b + w_1 x_1 + w_2 x_2$





Feature Scaling



Gradient Descent Theory

Question

• When solving:

$$\theta^* = \arg\min_{\theta} L(\theta)$$
 by gradient descent

• Each time we update the parameters, we obtain θ that makes $L(\theta)$ smaller.

 $L(\theta^0) > L(\theta^1) > L(\theta^2) > \cdots$

Is this statement correct?

Warning of Math

Formal Derivation

• Suppose that θ has two variables { θ_1 , θ_2 }

1.0 0.480 0.400 0.480 0.400 0.320 0.5 0.080 0.160 $heta_2$ 0.0 0.240 0² 0.320 0.489 0.400 Given a point, we can 0.560 0.640 -0.5 0.800 easily find the point 0.720 with the smallest value 1.280 1.200 nearby. How? -1.0 ► _1.0 1.388 -0.50.5 1.0 0.0 θ_1

Taylor Series

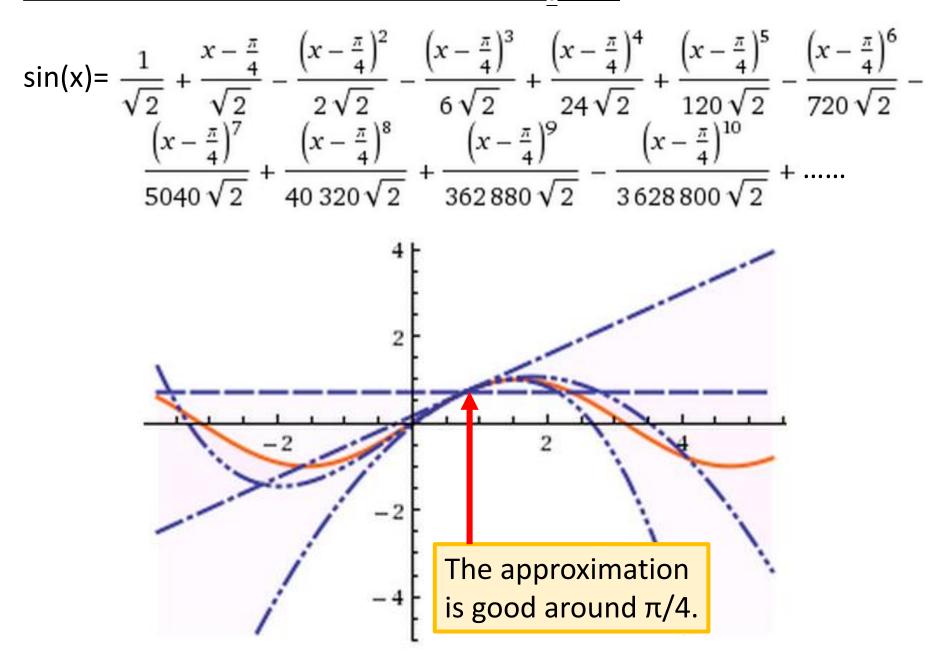
• **Taylor series**: Let h(x) be any function infinitely differentiable around $x = x_0$.

$$h(x) = \sum_{k=0}^{\infty} \frac{h^{(k)}(x_0)}{k!} (x - x_0)^k$$

= $h(x_0) + h'(x_0)(x - x_0) + \frac{h''(x_0)}{2!} (x - x_0)^2 + \dots$

When x is close to $x_0 \Rightarrow h(x) \approx h(x_0) + h'(x_0)(x - x_0)$

E.g. Taylor series for h(x)=sin(x) around $x_0=\pi/4$



Multivariable Taylor Series

$$h(x, y) = h(x_0, y_0) + \frac{\partial h(x_0, y_0)}{\partial x} (x - x_0) + \frac{\partial h(x_0, y_0)}{\partial y} (y - y_0)$$

+ something related to $(x - x_0)^2$ and $(y - y_0)^2 + \dots$

When x and y is close to x_0 and y_0

$$h(x, y) \approx h(x_0, y_0) + \frac{\partial h(x_0, y_0)}{\partial x} (x - x_0) + \frac{\partial h(x_0, y_0)}{\partial y} (y - y_0)$$

Back to Formal Derivation

Based on Taylor Series: If the red circle is *small enough*, in the red circle

$$L(\theta) \approx L(a,b) + \frac{\partial L(a,b)}{\partial \theta_1}(\theta_1 - a) + \frac{\partial L(a,b)}{\partial \theta_2}(\theta_2 - b)$$

$$s = L(a,b)$$

$$u = \frac{\partial L(a,b)}{\partial \theta_1}, v = \frac{\partial L(a,b)}{\partial \theta_2}$$

$$L(\theta)$$

$$\approx s + u(\theta_1 - a) + v(\theta_2 - b)$$

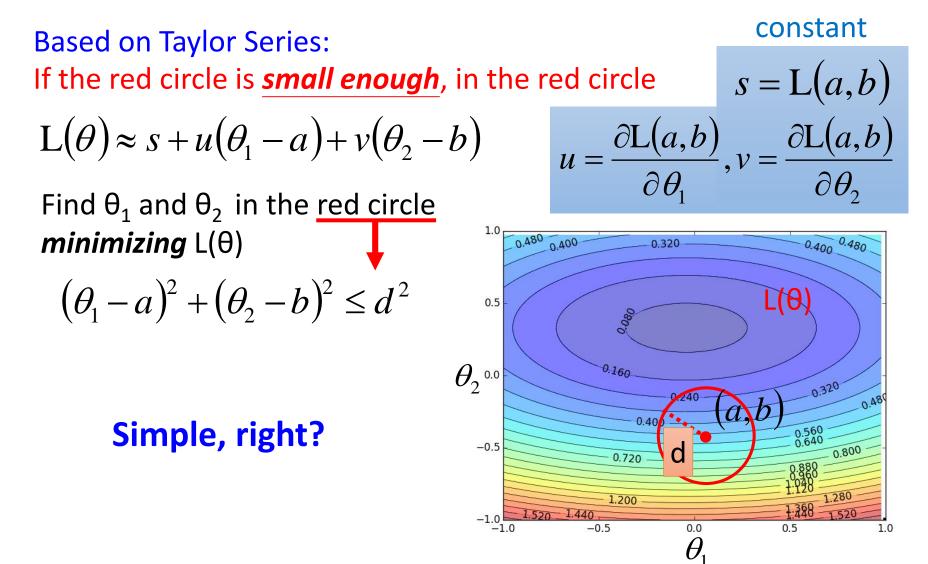
0.480

0.4

1.0

 θ_1

Back to Formal Derivation



Gradient descent – two variables

Red Circle: (If the radius is small)

$$L(\theta) \approx s + u(\theta_1 - a) + v(\theta_2 - b)$$

$$\Delta \theta_1 \qquad \Delta \theta_2$$

Find θ_1 and θ_2 in the red circle
minimizing L(\theta)

$$\left(\theta_1 - a\right)^2 + \left(\theta_2 - b\right)^2 \le d^2$$

$$\Delta \theta_1 \qquad \Delta \theta_2$$

To minimize $L(\theta)$

$$\begin{bmatrix} \Delta \theta_1 \\ \Delta \theta_2 \end{bmatrix} = -\eta \begin{bmatrix} u \\ v \end{bmatrix} \implies \begin{bmatrix} \theta_1 \\ \theta_2 \end{bmatrix} = \begin{bmatrix} a \\ b \end{bmatrix} - \eta \begin{bmatrix} u \\ v \end{bmatrix}$$

 $(\Delta \theta_1, \Delta \theta_2)$

(u,v)

Back to Formal Derivation

constant s - I(a b)If the red circle is *small enough*, in the red circle

$$L(\theta) \approx s + u(\theta_1 - a) + v(\theta_2 - b)$$

Based on Taylor Series:

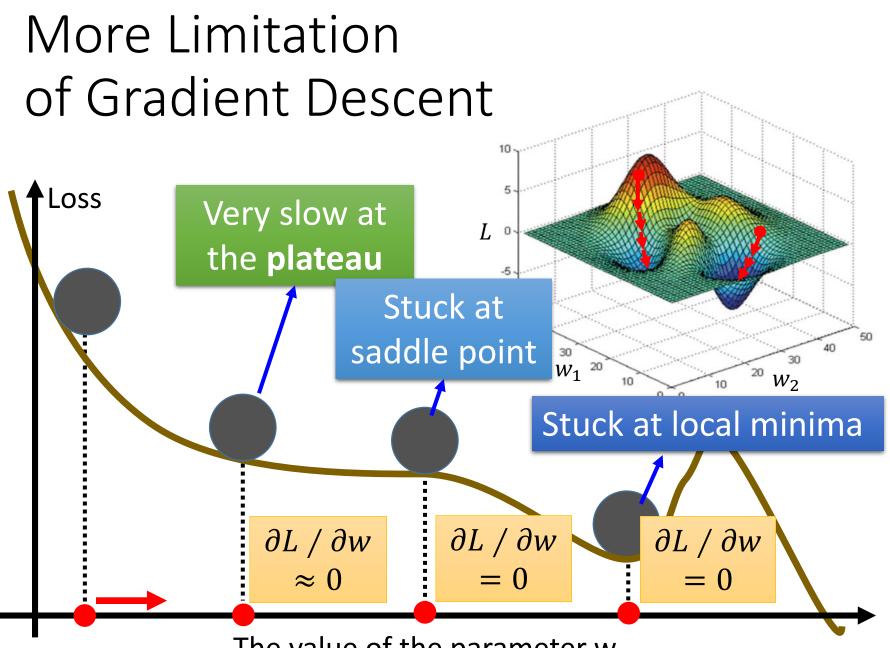
$$u = \frac{\partial L(a,b)}{\partial \theta_1}, v = \frac{\partial L(a,b)}{\partial \theta_2}$$

Find θ_1 and θ_2 yielding the smallest value of $L(\theta)$ in the circle

$$\begin{bmatrix} \theta_1 \\ \theta_2 \end{bmatrix} = \begin{bmatrix} a \\ b \end{bmatrix} - \eta \begin{bmatrix} u \\ v \end{bmatrix} = \begin{bmatrix} a \\ b \end{bmatrix} - \eta \begin{bmatrix} \frac{\partial L(a,b)}{\partial \theta_1} \\ \frac{\partial L(a,b)}{\partial \theta_2} \end{bmatrix} \overset{\text{Th}}{\text{det}}$$

his is gradient escent.

Not satisfied if the red circle (learning rate) is not small enough You can consider the second order term, e.g. Newton's method. End of Warning



The value of the parameter w